Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

catena-Poly[bis(ethane-1,2-diammonium) [manganese(II)-di- μ -phosphato- $\kappa^4 O:O'$]]: a one-dimensional manganese phosphate

Fabrice O. M. Gaslain[‡] and Ann M. Chippindale^{*}

Department of Chemistry, University of Reading, Berks RG6 6AD, England Correspondence e-mail: a.m.chippindale@rdg.ac.uk

Received 12 September 2007 Accepted 1 October 2007 Online 24 October 2007

The title compound, $\{(C_2H_{10}N_2)_2[Mn(PO_4)_2]\}_n$, contains anionic square-twisted chains of formula $[Mn(PO_4)_2]^{4-}$ constructed from corner-sharing four-membered rings of alternating MnO_4 and PO_4 units. The Mn and P atoms have distorted tetrahedral coordination and the Mn atom lies on a twofold axis. The linear manganese–phosphate chains are held together by hydrogen-bonding interactions involving the framework O atoms and the H atoms of the ethane-1,2diammonium cations, which lie in the interchain spaces.

Comment

Crystallization under solvothermal conditions has proved very successful for the synthesis of a wide range of metal-phosphate frameworks (Cheetham et al., 1999; Maspoch et al., 2007). Much of this work has focused on aluminium and gallium phosphates and their hetero-metal-substituted analogues, and many new materials with zeolite-like properties have been produced. The solvothermal method has also been used for the preparation of a range of transition-metal phosphates, including manganese(II) and manganese(III) compounds. Examples include $Mn_7(HPO_4)_4(PO_4)_2$ (Riou et al., 1987; Rojo et al., 2002), Mn₆(PO₄)₄·H₂O (Stock, 2002) and MnPO₄·H₂O (Lightfoot et al., 1987), and synthetic minerals, such as hureaulite, Mn₅(HPO₄)₂(PO₄)₂·4H₂O (Gerault et al., 1987; DeAmorim et al., 1996), and gatehouseite, Mn₅ (PO₄)₂(OH)₄ (Ruszala et al., 1977), as well as open-framework materials in which inorganic or organic cations are accommodated in pores or interlayer spaces in the metal-phosphate frameworks. Of these materials, which are rather few in number compared with the phosphates of other transition metals, such as iron, cobalt or zinc, only one example, NH₄Mn₄(PO₄)₃ (Neeraj et al., 2002), has a three-dimensional manganese-phosphate framework. The remainder, viz. NH₄Mn₂O(PO₄)(HPO₄)·H₂O (Lightfoot & Cheetham, 1989), Na₂Mn₂O(PO₄)₂·H₂O (Tong *et al.*, 2002), Ba(MnPO₄)₂·H₂O (Escobal *et al.*, 1999), (pipH₂)[Mn₆(H₂O)₂(HPO₄)₄(PO₄)₂]·-H₂O (pip is piperazine; Kongshaug *et al.*, 2001), [NH₃(CH₂)₂-NH₃][Mn₂(PO₄)₂]·2H₂O (Song *et al.*, 2003), [NH₃(CH₂)₂-NH₃][Mn₂(PO₄)₃]·xH₂O [x = 1 (Escobal *et al.*, 2000) and $x = \frac{1}{5}$ (Chippindale *et al.*, 2001)], [NH₃(CH₂)₂NH₃]_{3/2}[Mn₂(PO₄)₃]·-H₂PO₄ (Chippindale *et al.*, 2001) and (trenH₃)₂[Mn₃-(PO₄)₄]·6H₂O [tren is tris(2-aminoethyl)amine; Thoma *et al.*, 2004], all have two-dimensional manganese–phosphate frameworks. We describe here the synthesis and characterization of [NH₃(CH₂)₂NH₃]₂[Mn(PO₄)₂], (I), the first example of an organically templated manganese phosphate with a onedimensional chain-like structure.

The structure of (I) consists of inorganic chains of formula $[Mn(PO_4)_2]^{4-}$ separated by ethane-1,2-diammonium cations. Atom Mn1 occupies a special position (4*c*) and is tetrahedrally coordinated to two O2 and two O3 atoms with an average Mn1–O distance of 2.024 Å (Table 1). The bond-valence sum around atom Mn1 is 2.14 (Brese & O'Keeffe, 1991), confirming that manganese is present in the compound in the +2 oxidation state. The Mn–O bond lengths are in close agreement with those found in other compounds in which Mn²⁺ is in a tetrahedral MnO₄ unit, for example, in (trenH₃)₂-[Mn₃(PO₄)₄]·6H₂O (Thoma *et al.*, 2004). Atom Mn1 is con-

Figure 1

The local coordination of atoms in $[NH_3(CH_2)_2NH_3]_2[Mn(PO_4)_2]$ (50% probability displacement ellipsoids). [Symmetry codes: (i) $-x + \frac{1}{2}$, y, $z + \frac{1}{2}$; (ii) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}$, $-y + \frac{1}{2}$, z; (iv) $-x + \frac{1}{2}$, y, $z - \frac{1}{2}$; (viii) x, y, $z - \frac{1}{2}$; (ix) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.]

[‡] Present address: Laboratoire des Matériaux à Porosité Contrôlée (LMPC), CNRS UMR 7016, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France.

nected via Mn-O-P linkages through atoms O2 and O3 to an independent P atom, P1, which lies on a general position. In addition to the P1-O2 and P1-O3 bonds involved in bridging to atom Mn1, two terminal P1-O bonds, to atoms O1 and O4, complete the tetrahedral coordination around atom P1 (Fig. 1). The O-P-O angles lie in the range 107.5 (1)– 110.2 (1)°. The P1=O1 and P1=O4 distances, at 1.536 (1) and 1.534 (1) Å, are somewhat longer than expected for terminal P=O bonds. Their elongation arises as a result of strong hydrogen-bonding interactions with the ethane-1,2-diammonium cations (see below).

The Mn1O₄ and P1O₄ tetrahedra are linked in strict alternation through their vertices to generate infinite squaretwisted chains of formula $[Mn(PO_4)_2]^{4-}$ containing fourmembered Mn₂P₂ rings of alternating Mn- and P-based units [described as single 4-rings (*S*4*R*) in zeolite notation]. The Mn²⁺ cations are well separated from each other within the chains $[Mn1 \cdots Mn1^{viii} = 4.434 (1) \text{ Å}]$. The chains run parallel to the *c* axis (Fig. 2) and lie in layers in the *bc* plane. These layers are then stacked in an *ABAB* fashion along the *a* axis (Fig. 3), with the chains in layer *A* lying antiparallel to those in layer *B*.

In order to balance the negative charge of the manganesephosphate chains, the ethane-1,2-diammonium cations located in the interlayer space must be diprotonated, and this is confirmed by the location of all H atoms in a difference Fourier map. A network of hydrogen bonds between the two NH₃ groups of the ethane-1,2-diammonium cations and the O atoms of the phosphate groups serves to link the chains together to generate a three-dimensional assembly (Table 2). Hydrogen bonds involving atom N1 link the manganesephosphate chains into layers in the *bc* plane. Atom N1 is within *ca* 3.1 Å of four O atoms, three of which are within the same chain [N1 \cdots O2ⁱ = 2.816 (2) Å, N1 \cdots O3 = 3.064 (2) Å and N1 \cdots O4 = 2.811 (2) Å; all symmetry codes are as in

Figure 2

A view of the title compound along the *b* axis, showing corner sharing of alternating MnO_4 tetrahedra (white) and PO_4 tetrahedra (grey), generating $[Mn(PO_4)_2]^{4-}$ chains. Ethane-1,2-diammonium cations lie between the manganese–phosphate chains (key: C light-grey spheres; N dark-grey spheres; H atoms omitted).

Table 2], with the fourth in a neighbouring chain $[N1\cdots O4^{v} = 2.737 (2) \text{ Å}]$. Adjacent layers are then linked together by hydrogen bonds *via* atom N2, which is within *ca* 3.1 Å of five O atoms. Three of these O atoms are within the same chain $[N2\cdots O1^{ii} = 2.877 (2) \text{ Å}, N2\cdots O1^{vi} = 2.729 (2) \text{ Å} and N2\cdots O3^{ii} = 2.951 (2) \text{ Å}]$ and the remaining two are in a chain in an adjacent layer $[N2\cdots O1^{vii} = 2.924 (2) \text{ Å} and N2\cdots O4^{vii} = 3.116 (3) \text{ Å}].$

Curiously, to date, the title compound has only been synthesized by heating a mixture of pre-formed $[NH_3(CH_2)_2NH_3]_{3/2}[Mn_2(HPO_4)_3] \cdot H_2PO_4$ and ethane-1,2diamine in an autoclave at 433 K. Attempts to prepare it directly from a manganese(II) salt, phosphoric acid and ethane-1,2-diamine in a conventional solvothermal reaction have not so far been successful. In [NH₃(CH₂)₂NH₃]_{3/2}-[Mn₂(HPO₄)₃]·H₂PO₄, Mn^{II} is present in MnO₆ units with octahedral geometry and in MnO₅ units with a geometry intermediate between square pyramidal and trigonal bipyramidal. These units are linked through HPO₄ tetrahedra to generate a layered structure, with ethane-1,2-diammonium cations and hydrogen phosphate anions residing within the interlayer space. By contrast, the title compound contains Mn^{2+} in tetrahedral MnO_4 units. The change in the coordination geometry of manganese on heating [NH₃(CH₂)₂- $NH_3]_{3/2}[Mn_2(HPO_4)_3] \cdot H_2PO_4$ in ethane-1,2-diamine probably proceeds via a dissolution process, although the mechanism is not yet known. Tetrahedral MnO₄ coordination geometry is still rather rare in manganese(II) phosphates and is most commonly found in mixed-metal phosphates, such as MnAlPOs and MnGaPOs, which have zeolite-like frameworks. With the exception of $(trenH_3)_2[Mn_3(PO_4)_4]\cdot 6H_2O$ (Thoma et al., 2004), all the compounds listed in the intro-

A view along the c axis, showing the stacking of the manganese-phosphate chains. The key is as for Fig. 2.

duction contain manganese coordinated to five, six or seven O atoms.

A number of amine-templated metal phosphates with chain structures based on MO₄ and PO₄ units have been reported. Two chain structure types have been identified. The first, more common type, contains edge-sharing M_2P_2 four-membered rings forming ladder-like structures with additional pendant phosphate groups; examples include [NH₃(CH₂)₂NH₃]- $[Al(PO_4)(HPO_4)]$ (Wang et al., 2003) and $[NH_3(CH_2)_2NH_3]$ - $[M(\text{HPO}_4)_2]$ [M = Co (Cowley & Chippindale, 1999) and M =Zn (Chidambaram et al., 1999)]. The second chain type contains corner-sharing M_2P_2 rings of the sort described here, for example (NH₄)[NH₃CH₂CH(NH₃)CH₃][Al(PO₄)₂] (Avi et al., 2001), [NH₃(CH₂)₄NH₃][Ga(PO₄)(HPO₄)] (Chippindale et al., 1998), $(dmpH_2)[Co(HPO_4)_2]$ (dmp is N,N'-dimethylpiperazine; Choudhury et al., 2000) and (pipH₂)[Zn(HPO₄)₂] (Natarajan, 2002).

In all cases, the packing together of the chains is driven by hydrogen-bonding interactions. Where the chains contain hydrogenphosphate groups, e.g. PO(OH) and PO(OH)₂ groups, the possibility exists for interchain hydrogen-bonding interactions in addition to chain-amine interactions, as is observed, for example, in $[NH_3(CH_2)_2NH_3][Co(HPO_4)_2]$ (Cowley & Chippindale, 1999). In the title compound {and (NH₄)[NH₃CH₂CH(NH₃)CH₃][Al(PO₄)₂]; Avi et al., 2001}, no interchain interactions are possible and the metal-phosphate chains are well separated. Hydrogen-bonding networks in these cases therefore involve only chain-amine interactions.

Experimental

Single crystals of (I) were prepared under solvothermal conditions. [NH₃(CH₂)₂NH₃]_{3/2}[Mn₂(HPO₄)₃]·H₂PO₄ (0.15 g; Chippindale et al., 2001) was stirred with ethane-1,2-diamine (6.00 ml) at room temperature until homogeneous, sealed in a Teflon-lined autoclave and heated at 433 K for 3 d. The solid product was collected by filtration, washed with methanol and dried in air at room temperature. It consisted of a cream-white powder containing colourless rectangular plates of the title compound suitable for single-crystal X-ray analysis. The powder X-ray diffraction pattern of the bulk product could be indexed on the basis of the orthorhombic unit cell determined from the single-crystal determination with refined lattice parameters a = 8.5667 (13) Å, b = 8.8633 (16) Å and c = 17.207 (3) Å,confirming that the sample is monophasic. An IR spectrum of the product showed features consistent with the presence of ethane-1,2diammonium cations. A series of strong broad bands occurred in the region 3500-2400 cm⁻¹, corresponding to -NH and -CH₂- stretching modes. The two medium-intensity sharp bands observed at 1645 and $1540\ \text{cm}^{-1}$ are due to NH_3^+ bending modes (antisymmetric and symmetric, respectively). A number of strong sharp bands appearing below 1400 cm⁻¹ correspond to -CH₂- group bending modes with P-O and Mn-O stretching and bending modes. Unambiguous individual assignments of these bands are not possible. Thermogravimetric analysis under flowing N₂ showed a weight loss of ca 15.8% over the range 443-521 K and ca 17% over the range 521-823 K. These correspond to the loss of two moles of ethane-1,2-diamine from (I) (the calculated value for the loss of one mole of ethane-1,2-diamine is 16.27%). Collapse of the framework occurred above 823 K to give an amorphous residue.

Crystal data

$(C_2H_{10}N_2)_2[Mn(PO_4)_2]$ $M_r = 369.12$ Orthorhombic, <i>Pccn</i> a = 17.2363 (5) Å b = 8.5726 (2) Å	V = 1310.47 (6) Å ³ Z = 4 Mo K α radiation $\mu = 1.29 \text{ mm}^{-1}$ T = 293 (2) K
c = 8.8689 (2) Å	$0.19 \times 0.07 \times 0.03 \text{ mm}$
Data collection	
Enraf–Nonius KappaCCD diffractometer	1724 measured reflections 1477 independent reflections
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) Twin = 0.90, Tway = 0.96	$R_{\rm int} = 0.051$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.026$ wR(F ²) = 0.026	H atoms treated by a mixture independent and constrained

K[T > 20(T)] = 0.020	I atoms treated by a mixture of
$wR(F^2) = 0.026$	independent and constrained
S = 1.09	refinement
1167 reflections	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
111 parameters	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (\dot{A}, \circ) .

Mn1-O2 ⁱ	2.0486 (13)	P1-O4	1.5339 (13)
Mn1-O3	1.9976 (13)	N1-C1	1.482 (3)
P1-O1	1.5363 (14)	N2-C2	1.474 (3)
P1-O2	1.5437 (13)	C1-C2	1.512 (3)
P1-O3	1.5275 (13)		
$O2^{i}-Mn1-O2^{ii}$	116.56 (8)	O1-P1-O4	109.66 (9)
$O2^{i}-Mn1-O3$	98.52 (5)	O2-P1-O4	108.71 (8)
O2 ⁱ -Mn1-O3 ⁱⁱⁱ	114.89 (6)	O3-P1-O4	110.03 (8)
O3–Mn1–O3 ⁱⁱⁱ	114.47 (8)	Mn1 ^{iv} -O2-P1	126.65 (8)
O1-P1-O2	110.22 (8)	Mn1-O3-P1	147.24 (9)
O1-P1-O3	107.53 (8)	N1-C1-C2	110.02 (16)
O2-P1-O3	110.69 (8)	N2-C2-C1	110.41 (16)

Symmetry codes: (i) $-x + \frac{1}{2}$, $y, z + \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}$, $z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}$, $-y + \frac{1}{2}$, z; (iv) $-x + \frac{1}{2}, y, z - \frac{1}{2}.$

Table 2		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H11 \cdots O2^{i}$	0.92 (3)	1.91 (4)	2.816 (2)	173 (3)
$N1 - H12 \cdot \cdot \cdot O4$	0.84 (3)	1.99 (3)	2.811 (2)	168 (3)
$N1 - H13 \cdots O4^{v}$	0.89 (3)	1.88 (3)	2.737 (2)	163 (3)
$N2-H21\cdots O1^{ii}$	0.86 (3)	2.02 (3)	2.877 (2)	174 (3)
$N2-H22\cdots O1^{vi}$	0.93 (3)	1.81 (3)	2.729 (2)	170 (2)
$N2-H23\cdots O1^{vii}$	0.80(3)	2.21 (3)	2.924 (3)	147 (4)
$N2-H23\cdots O4^{vii}$	0.80 (3)	2.41 (3)	3.116 (3)	147 (4)

Symmetry codes: (i) $-x + \frac{1}{2}$, $y, z + \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}$, $z + \frac{1}{2}$; (v) $x, -y + \frac{3}{2}$, $z + \frac{1}{2}$; (vi) x, y, z + 1; (vii) -x, -y + 1, -z + 1.

All H atoms were located in difference Fourier maps. The fractional coordinates and isotropic displacement parameters of H atoms bonded to N atoms were refined, whilst the remaining H atoms were placed geometrically and constrained to ride on their parent C atoms $[C-H = 0.95 \text{ Å and } U_{iso}(H) = 1.2U_{eq}(C)].$

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

The authors thank Dr David Watkin, Chemical Crystallography Laboratory, Oxford, for diffractometer access.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: HJ3053). Services for accessing these data are described at the back of the journal.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Ayi, A. Y., Choudhury, A. & Natarajan, S. (2001). J. Solid State Chem. 156, 185–193.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
- Cheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268–3292.
- Chidambaram, D., Neeraj, S., Natarajan, S. & Rao, C. N. R. (1999). J. Solid State Chem. 147, 154–169.
- Chippindale, A. M., Bond, A. D., Law, A. D. & Cowley, A. R. (1998). J. Solid State Chem. 136, 227–232.
- Chippindale, A. M., Gaslain, F. O. M., Cowley, A. R. & Powell, A. V. (2001). J. Mater. Chem. 11, 3172–3179.
- Choudhury, A., Natarajan, S. & Rao, C. N. R. (2000). J. Chem. Soc. Dalton Trans. pp. 2595–2598.
- Cowley, A. R. & Chippindale, A. M. (1999). J. Chem. Soc. Dalton Trans. pp. 2147–2149.
- DeAmorim, H. S., DoAmaral, M. R., Moreira, L. F. & Mattievich, E. (1996). J. Mater. Sci. Lett. 15, 1895–1897.

- Escobal, J., Mesa, J. L., Pizarro, J. L., Lezama, L., Olazcuaga, R. & Rojo, T. (1999). J. Mater. Chem. 9, 2691–2695.
- Escobal, J., Pizarro, J. L., Mesa, J. L., Lezama, L., Olazcuaga, R., Arriortua, M. I. & Rojo, T. (2000). *Chem. Mater.* **12**, 376–382.
- Gerault, Y., Riou, A. & Cudennec, Y. (1987). Acta Cryst. C43, 1829-1830.
- Kongshaug, K. O., Fjellvag, H. & Lillerud, K. P. (2001). J. Solid State Chem. 156, 32-36.
- Lightfoot, P. & Cheetham, A. K. (1989). J. Solid State Chem. 78, 17-22.
- Lightfoot, P., Cheetham, A. K. & Sleight, A. W. (1987). *Inorg. Chem.* 26, 3544–3547.
- Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770–818.
- Natarajan, S. (2002). Inorg. Chem. 41, 5530-5537.
- Neeraj, S., Noy, M. L. & Cheetham, A. K. (2002). *Solid State Sci.* **4**, 397–404. Nonius (2001). *COLLECT*. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Riou, A., Cudennec, Y. & Gerault, Y. (1987). Acta Cryst. C43, 821-823.
- Rojo, J. M., Larranaga, A., Mesa, J. L., Urtiago, M. K., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (2002). J. Solid State Chem. 165, 171–177.
- Ruszala, F. A., Anderson, J. B. & Kostiner, E. (1977). Inorg. Chem. 16, 2417– 2422.
- Song, Y. N., Zavalij, P. Y., Chernova, N. A. & Whittingham, M. S. (2003). Chem. Mater. 15, 4968–4973.
- Stock, N. (2002). Z. Naturforsch. Teil B, 57, 187-192.
- Thoma, S. G., Bonhomme, F. & Cygan, R. T. (2004). *Chem. Mater.* **16**, 2068–2075.
- Tong, W., Xia, G. G., Tian, Z. R., Liu, J., Cai, J., Suib, S. L. & Hanson, J. C. (2002). Chem. Mater. 14, 615–620.
- Wang, Y., Yu, J., Li, C. & Xu, R. R. (2003). Inorg. Chem. 42, 4597-4602.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.